
KSME International Journal, VoL 18 No. 8, pp. 1375--1387, 2004 1375 

Elastodynamic Response of a Crack Perpendicular 
to the Graded Interfacial Zone in Bonded Dissimilar 

Materials Under Antiplane Shear Impact 

Sungho Kim, Hyung Jip Choi* 
School o f  Mechanical and Automotive Engineering, Kookmin University, 

Seoul 136- 702, Korea 

A solution is given for the elastodynamic problem of a crack perpendicular to the graded 

interracial zone in bonded materials under the action of antiplane shear impact. The interfacial 

zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear 

modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and 

Fourier integral transforms are employed to reduce the transient problem to the solution of a 

Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical 

inversion of the Laplace transforms, the values of the dynamic stress intensity factors are 

obtained as a function of time. As a result, the influences of material and geometric parameters 

of the bonded media on the overshoot characteristics of the dynamic stress intensities are 

discussed. A comparison is also made with the corresponding elastostatic solutions, addressing 

the inertia effect on the dynamic load transfer to the crack tips for various combinations of the 

physical properties. 

Key Words :Bonded  Dissimilar Materials, Functionally Graded Materials, Interfacial Zone, 

Mode III Dynamic Stress Intensity Factors 

1. Introduction 

The functionally graded material features at a 

nonhomogeneous continuum level the smooth 

spatial variations of thermomechanical proper- 

ties. The deliberate use of such a graded medium 

in the form of interfacial zone or coating can thus 

contribute to alleviating certain drawbacks aris- 

ing from the property mismatch around sharp 

interfaces in the conventional, discretely layered 

material system (Suresh and Mortensen, 1998; 
Miyamoto et al., 1999). In consideration of the 

fail-safe concept in structural design with the 

graded constituent, significant progress has been 
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made in characterizing the fatigue and fracture 

behavior of nonhomogeneous materials that con- 

tain crack-like flaws under various loading 
conditions. A number of earlier works in this area 

that may be of particular interest are well sum- 

marized in the review articles (Erdogan, 1998; 

Noda, 1999). Some additional studies that spec- 

ifically deal with the elastostatic crack problems 
entailing the graded, nonhomogeneous properties 

can be found in literature (Selvadurai, 2000; 

Becker et al., 2001 ; Choi, 2001a,b,c ; Choi, 2002 ; 

Dag and Erdogan, 2002 ; Chung et al., 2003 ; Bahr 

et al., 2003; Guo et al., 2004) and in other 

references cited therein. One of the most salient 
facets in the foregoing class of crack problems is 

that the near-tip stress field retains the inverse 
square-root singularity, together with the same 

angular distributions around the crack tip as 

those in homogeneous materials, provided the 
elastic properties are continuous and piecewise 
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differentiable near and at the crack tip (Eischen, 

1987 ; Jin and Noda, 1994). 

In contrast, investigations on the dynamic crack 

problems for the graded, nonhomogeneous ma- 

terials have received rather limited attention, 

mainly because the corresponding elastodynamic 

analysis under transient loading involves more 

physical parameters and is more complicated 

when compared to its static counterpart. How- 

ever, owing to the increasing applications of 

graded materials in critical situations where the 
loading may be dynamic in nature, e.g., impact or 

blast loading, several researchers in recent years 

have been engaged in developing techniques to 

study the cracked nonhomogeneous media sub- 

jected to time-dependent loading conditions. 

Jiang and Wang (2002) examined some aspects of 

dynamic crack propagation in a nonhomogeneous 

interphase, whereas Parameswaran and Shukla 

(1999) performed the asymptotic analysis to es- 

tablish the equations for the elastic stress field 

around the steadily growing crack along the gra- 

dient of functionally graded materials. The 

evaluation of dynamic stress intensity factors for a 

mode III crack in a graded strip between dissimi- 
lar half-planes is due to Babaei and Lukasiewicz 

(1998) and the analysis of a crack in a graded 

coating subjected to antiplane shear impact was 

conducted by Shul and Lee (2002). The impact 

behavior of bimaterial and graded interface 

cracks was compared by Marur and Tippur 

(2000). Moreover, the torsional impact response 

of a penny-shaped interface crack in bonded 

dissimilar half-spaces with a graded interlayer 

was studied by Li et al. (2002). Another example 

of transient fracture analysis for the functionally 

graded material is that of an antiplane shear crack 

using the boundary integral equation method 
(Zhang et al., 2003). In particular, instead of 

employing certain continuous exponential or 

power functions to describe the material parame- 

ters of the graded media, Wang et al. (2000) and 
Itou (2001) simulated such materials as the sum 
of several sublayers with slightly different 

homogeneous properties in each sublayer to pro- 

vide the solutions for some dynamic crack 

problems involving the graded properties. Most 

recently, Huang and Wang (2004) assigned the 

shear modulus and mass density that vary linearly 

in each sublayer and are continuous on the 

subinterfaces, with application to the problem of 

a crack in a graded interfacial zone subjected to 

harmonic antiplane shear loading. 

In this paper, the impact response of an 
antiplane shear crack that is aligned perpen- 

dicular to the graded interfacial zone in bonded 

materials is investigated. The interracial zone is 

modeled by a nonhomogeneous interlayer with 
the spatially varying shear modulus and mass 

density in terms of power functions between the 

two dissimilar, homogeneous half-planes. Based 

on the use of Laplace and Fourier integral 

transforms, formulation of the crack problem is 

reduced in the Laplace transform domain to a 

Cauchy-type singular integral equation. Once the 

integral equation is solved, the mode III stress 

intensity factors are defined and evaluated in the 

Laplace transform domain, followed by the nu- 

merical Laplace inversion to recover the time- 

dependence of the crack-tip response in the phys- 

ical domain. As a result, a comprehensive para- 

metric study is presented of the effects of material 
and geometric properties of the bonded media on 

the dynamic stress intensity factors, addressing the 

dynamic load transfer and overshoot characteris- 

tics over the corresponding elastostatic solutions. 

2. Problem Statement and 
Basic Equations 

Consider the two dissimilar, homogeneous half- 

planes bonded through a graded interfacial zone. 

As shown in Fig. 1, the half-plane on the right- 

hand side contains a crack of length 2 c = b - a  

and location d - -  (b + a ) / 2  perpendicular to the 
interfacial zone. By modeling the interfacial zone 

as a nonhomogeneous interlayer of thickness h, 

the quantities associated with the cracked half- 

plane, the interlayer, and the uncracked half- 
plane are distinguished in order from the right- 

hand side and defined in the local coordinates, 
(x, y) = (x~, y) ,  j =  1,2, 3. It is assumed that the 

bonded materials, which are initially at rest and 

stress-free, are suddenly subjected to an antiplane 
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Fig. 1 Geometry, coordinate systems, and loading 
condition for bonded dissimilar media with a 
crack perpendicular to the graded interfacial 
zone. 

shear traction applied on the crack surface. The 

shear moduli and mass densities of the homo- 

geneous constituents are denoted by ,u s and p~, j = 

1,3, respectively, and those of the nonhomo- 

geneous interlayer are expressed as (Chiu and 

Erdogan, 1999) 

p z ( x ) = / l a ( l + a x )  p, p z ( x ) = p a ( l + a x )  r (1) 

where in the local coordinates ( x , y ) =  (x2,y), 
the constant a and the gradient exponents /~ and 

7 are specified not only to make the transition of 

such properties continuous from one half-plane 

to the other, but to render the proposed dynamic 

crack problem analytically tractable, i.e., 

d , =  

h~/pff pa ' 
21n (/zt/,Ua) (2) 

/~ = in (tzl//~ a) - in (pl/p3) ' 

r = 3 - 2  

as a result, it is allowable to have the arbitrary 

coverage of material combinations in the bonded 

media with a graded, nonhomogeneous interfacial 

zone. It is noted that the exponential-law appro- 

ximation of such properties as was assumed by 

Babaei and Lukasiewicz (1998) and Shul and Lee 

(2002) is applicable only to the special case 

where the mass density of the graded material 

varies in proportion to the shear modulus such 

that tzfftza=pl/pa, which appears to be not phy- 

sically representative enough. 

With w j ( x , y , t ) ,  j = 1 , 2 , 3 ,  referring to the z-  

component of the displacement vector that 

nonvanishes under antiplane shear deformation, 

the corresponding stress components are given by 

8w~ 8w~ 
r ~ x ~ : p s ~ - ,  r ~ z : / . t ~ - ;  j = 1 , 2 , 3  (3) 

and the equations of motion for the constituents 

of the bonded materials can be written as 

V2wj - p j  O~wj ; j = l , 3  (4) 
l# 3t 2 

aft 8w~ _ pa o~ w~ 
V=w2+ l + a x  0~-  a 3 ( l + a x )  2 at 2 (5) 

where t is the time and V e represents the two- 

dimensional Laplacian operator in the variables 

x and y. 

On account of the geometric and material 

symmetry about the crack plane, only the upper 

half of the region, y>O, is to be considered, 

subjected to the following initial conditions 

w~(xs, y,O) =0,  c3~-kxj, y ,o)- -O ; (6) 

j=1 ,2 ,3 ,  X,>0, O<xz<h,  xa<0 

and the perfect bonding along the nominal 

interfaces between the constituents and the 

regularity conditions are enforced in the local 

coordinates as 

Wl (O, y, t) = wz(h, y, t) , (7) 
w2(O,y, t) = w3(0,y, t) 

nx~(O,y, t) = r2xz(h,y, t), 
(8) 

r ~  (0, y, t ) =  r3~(O,y, t) 

wl( +oo, y , t ) ,  w 3 ( - c ~ , y , t ) = O  (9) 

while the mixed conditions along the crack plane, 

y=O, can be prescribed as 

ws(xs, O , t ) = O ; j = 2 , 3 ,  0 < x z < h ,  x3<O (10) 

wl(xl,0, t) = 0  ; 0 < x l <  a, x l <  b (11) 

rly~(xl,0, t ) = f ( x , ) H ( t ) ;  a < x l < b  (12) 

where f (xl) denotes the arbitrary crack surface 

traction and H(t) is the Heaviside unit step 

function. 

A pair of Laplace transform and its inverse 

over the time variable t is defined as (Churchill, 

1981) 
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w* (xs, y, P) = ]^=ws ~ (xs, y,  t) e-mdt, 
,¢0 

(13) 
1 t) = ~  fBrW* (xj, y,p) eptdp Wj(X j ,  y ,  

where p is the Laplace transform variable, Br 
stands for the Bromwich path of integration, and 
i :  (--  1) x/2, so that the time-dependence in the 
equations of  motion can be removed by the 
application of the Laplace transform. 

Subsequently, upon applying the Fourier inte- 
gral transform to the space variables in the 
Laplace transform domain, the general solutions 
for the displacement components, us* (x ,y ,p ) ,  
j =  1,2,3, in the local coordinates, (x,y)  = (x~, 
y) ,  j = 1,2, 3, that satisfy the regularity conditions 
in Eq. (9) are obtained as 

w~ (x,y,p) = 2  fo~Ale-a~x sin syds 
(14) 

1 + f a ~-a~-~x 2~r J_ ==~ ds ; x > 0  

wz* (x, y, P)=2(1  + a x ) ~ f 0 " {  BII~ I ~ ( l  +ax)] 

s 1 

; 0 < x < h  (15) 

w~(x,y,p)=2rfo~Cea~Xsinsyds;x<O (16) 

where s is the Fourier transform variable, Aj(s, 
p), B~(s,p), j = l , 2 ,  and C(s,P) are unknown 
functions to be determined, Iv( ) and K~( ) are 
the modified Bessel functions of the first and 
second kind, respectively, with Aj(s,p), j = l , 3 ,  
and v(p) being given by 

_ 2 Ps , ~ j - s ~  ~/~ ; j=I ,3,  
(17) 

and the expressions for the stress components are 
also obtainable in the Laplace transform domain 
by substituting Eqs. (14)-(16) into Eq. (3). 

3. S i n g u l a r  In tegra l  Equat ion  

In solving the current crack problem, a new 
unknown function is introduced in the Laplace 
transform domain to replace the mixed conditions 

in Eqs. (11) and (12) as 

0 *(xa, O,p);Xl>O (18) ¢* (xl, p) =~-1 wl 

under the single-valuedness for the displacement 
outside the crack line such that 

q~*(xl, p)=O;O<xl<a, xl>b (19) 

fbqS* (xl, p) dx~=O (20) 

and the interface and crack surface conditions in 
Eqs. (7), (8), and (12) are rewritten in the 
Laplace transform domain as 

w~ (0, y, p) = we (h, y, p), 
(21) 

w~* (0, y, p) = we (0, y, b) 

r~= (O, y,p) = r2*x~ (h, y,p), 
(22) 

r;x~ ( O, y, p ) = "C~xz ( O, y, p ) 

f ( X l )  rg, (x,,O,p) , a<Xl<b. (23) 
P 

It then follows from Eqs. (14), (18), and (19) 
that the expression for the unknown Az(s,p) is 
obtained as 

Az(s,P) = i f  abe * (r,p) e~rdr (24) 

and those for the remaining unknowns, A~(s, p), 
Bs(s,P), j = l , 2 ,  and C(s,p), can be determined 
in terms of ~b* by applying the interface 
conditions in Eqs. (21) and (22). The auxiliary 
function ~b* thus becomes the only unknown to be 
evaluated from the crack surface condition in Eq. 
(23), subjected to the compatibility condition in 
Eq. (20). 

The traction component, r~z, along the crack 
plane can be written by using Eqs. (3) and (14) 
and substituting the required expressions for Aj  
(s,p), j = l , 2 ,  such that 

~ l i m  rg~ (x, y, P) 
/J1 y~+O 

2fab$*(r,p) drf~R(s,P)e~s(r-x)ds 

; x >0 (25) 

with the functions Q(s,p) and R(s,p) given by 
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(26) 
s 1 s z 

-- f21K~) [~1  ( -~- ah) ]} -- (~11) 

R (s, p) : 1 ,  sZ~P~-Pz (27) 
S V ~ I  

where the contractions are made for f~(s,p), i, 
j = l , 2 ,  as 

fu=&l~[iJd~(l +ah)l+ &Iv+l[l~(l +ah) ] (28) 

s s 1 

in which ~s(s,P), j=1 ,2 ,3 ,  are expressed as 

. , ,  x-el- a (1- - /~+2v)  ÷A~] 
a~= ~ l + anj T [ -  - 2 7 i 7 ~  (32) 

[ ~ l  1-,8 
&= s ( l + a h ) i -  (33) 

a a = ~ - - 2 ( 1 - - / 9 + 2 v ) .  (34) 

It is noted that the integrand of the first kernel 
in Eq. (25) has the exponentially decaying 
behavior as the variable s tends to infinity, 
although the convergence of the related integral 
may be rendered relatively shower than otherwise 
when the variables x and r approach zero simul- 
taneously. In addition, the function R(s,p) in 
Eq. (27) possesses the following asymptotic 
property 

Isl 
lira R (s, p) = R =  (s) -- (35) Isl ~o° S 

from which it can be identified that the limiting 
value, R=(s),  gives rise to the singularity the 
kernels in Eq. (25) may have. 

As a result, after separating the singular part 
and applying the remaining crack surface condi- 
tion in Eq. (23), an integral equation with a 
Cauchy singular kernel 1 / ( r - - x )  can be derived 
as 

f bck*(r,p) dr+fabG(x,r,p) qS*(r,p)dr 
Y - - X  

(36) 
=;r f(x) ;a<x<b 

Ill p 

where the function G (x, r ,p)  is a regular kernel 
written in the form as 

G(x, r,p)= fo®[R(s,p) -R~(s) ]sin s(r-x) ds 
(37) 

+ f0~O (s, p) e-a~(r+x)ds. 

Because the dominant singular kernel in the 
integral equation is solely attributable to the 
Cauchy type for a = 0  as well as a>0 ,  the near- 
tip stress field in the Laplace transform domain 
would be characterized by the inverse square- 
root singularity (Erdogan, 1998). The auxiliary 
function ~b*(r,p) is therefore expressed as 
(Muskhelishvili, 1953) 

qA*(r,p)-- g(r,p) ; a < r < b  (38) 
~/(r-a) (b - r )  

where g(r,p) is an unknown function bounded 
and nonzero at r=a and r=b, and in the 
normalized interval 

r /  b - a l ' ~  + - - ; - l < ( ~ , , ~ / < l  (391 

the solution to the integral equation can be 
expanded into the series of the Chebyshev 
polynomials of the first kind Tn as 

1 
~b* (r/,p) = ~3-]cnTn(z]) ;[z l [<l  (40) p41 -- zl 2 n=t 

in which cn, n ~ l ,  are the coefficients to be 
calculated and this series expansion identically 
satisfies the compatibility condition in Eq. (20) 
via the orthogonality of Tn. 

Upon substituting Eqs. (38)-(40) into Eq. 
(36), truncating the series at n=N, and using 
the properties of the Chebyshev polynomials 
(Abramowitz and Stegun, 1972), it can be shown 
that the integral equation is regularized as 

+ b -a  f~ G($, V,P) T~(z/) dv] 

_ xy(~);  I$1 <1 (41) /11 
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where Un is the Chebyshev polynomial of the 

second kind. To solve the above functional 

equations, the zeros of Tu(~) are employed as a 

set of collocation points which are concentrated 

near the ends ~ = + 1  

_ zc  2 / - 1  • 
T~(t,)  =0, ~ , - c o s ( ~ - - ~ ) ; J = I , 2 , . . . , N  (42) 

and the integral equation can be recast into a 

system of linear algebraic equations for cn, 1 

n g N ,  by evaluating the equations in Eq. (41) at 

N station points &, 1 ~j<-N. 
Once the values of the coefficients, Cn, 1 ~ n <- 

N, are determined, the integral equation in Eq. 

(25) provides the singular portion of the traction 
ahead of the crack tips. As a result, the transmis- 

sion of the applied load to the crack tips and the 

ensuing elevation of the local stresses can be 
extracted by first defining and evaluating the 

stress intensity factors in the Laplace transform 

domain as 

KITX, (P) = lim ~ - ( a - x )  rl~,z (X,0, p) x~a- 
(43) 

__ Ill . / b - - a  ~,, (__l)ncn ; x < a  
p ¥ 2  n=l 

Kn*~b (P) = lim ~ ( x  -- b) r ~  (x, 0, p) 
x~O+ 

(44) 
_ 

- - - - f g - ~ - - = c ,  ; x>b  

and then the time-dependence of the stress inten- 

sification is recovered by applying the inverse 

Laplace transform, which can be numerically 

implemented by using an algorithm developed by 

Stehfest (1970) 

~ ln2 ~ Tz w-. [m,_2~.  Ktila(t)  =--~-mZg=I VmlklIIa\~-~llt }, t > 0  (45) 

~ l n 2  M , m 
Killb(t)~---~-m~__ 1VmKIIIlo(~-h-12); t > 0  (46) 

where Kina(t)  and Kmb(t) represent the dyna- 

mic mode III stress intensity factors at a specific 

time t for the crack tips a and b, respectively, M 
is a positive even number, and V~ is expressed as 

m~, ~/2 k ~/~(2k) I 
V,=(-l) "+~ 2 k=l,+,l12 (M/2-k)!k! (k-l)!(m-k)!(2k-m)! (47) 

At large times, the values of the dynamic stress 

intensity factors would converge to those of the 

elastostatic solutions 

]!m{ KIIIa (t), Knxb (t)} ~{ (Kma)star,c, (KHro)static } (48) 

and such static limits can be obtained based on 

the final-value theorem expressed in the form as 

(Churchill, 1981) 

{ (Kl[Ia)stauc, (KIilb)stauc }= limp { K~,a (p), K, ilb* (P)} (49) p-0+ 
To be mentioned is that due to the continuity of 

shear moduli and mass densities through the 

nonhomogeneous interlayer, the defined stress 

intensity factors are equally applicable for a = 0  

as well, which corresponds to the case of the 

crack-tip terminating at the nominal interface 

with the interlayer. 

4. N u m e r i c a l  R e s u l t s  a n d  D i s c u s s i o n  

The variations of the dynamic stress intensity 

factors are presented as a function of nondimen- 

sional time t ,  = Csl/C for various combinations of 

material (tZa/pl, 03/P1) and geometric parameters 

(h/2c, d /c)  of the problem, where cs=(l~l/ 
Pl)a/2 is the shear wave velocity in the cracked 

constituent. The crack is assumed to be suddenly 

excited by the uniform antiplane traction such 

that f (xl) = -- r0 in Eq. (12). In order to generate 

the numerical results, the series in Eq. (40) is 

expanded with thirty terms and the inverse 

Laplace transforms in Eqs. (45) and (46) are 

accomplished by employing fourteen terms, with 
the integrals in Eqs. (37) and (41) evaluated 

based on Gauss-Legendre and Gauss-Chebyshev 

quadratures, respectively (Davis and Rabinowitz, 

1984). The resulting values of the dynamic stress 

intensity factors are normalized b y / ~ =  roc ~12 and 

plotted in Figs. 2-9, where the corresponding 

elastostatic solutions from Eq. (49) are also 

added by the straight dotted lines. 

The dynamic stress intensity factor for the case 
of a crack in the infinite, homogeneous medium is 

first obtained and compared in Fig. 2 with the 

closed form solution which is given in terms of an 
integral for the initial times (Morrissey and 

Geubelle, 1997) 
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Fig. 2 Normalized dynamic stress intensity factors 

Kin( t ) / / (o  versus nondimensional time cs t / c  

for homogeneous materials. 

problems (Sih and Chen, 1981) that can be 

attributed, in this case, to the interactions between 

the scattered waves from the crack and the 

reflected waves from the nomina l  interfaces in the 

bonded media. Specifically, Figure 3a shows that 

the peaks are greater if the shear modulus  of the 

uncracked consti tuent is less than that of the 

cracked constituent, i.e., /13//~1< 1.0. The peak 

values are, however, suppressed below that of  the 

homogeneous media when ,u3/,ul > 1.0, caused by 

the constraint  exerted by the adjacent stiffer con- 

stituent. Further  observed is that the elapsed time 

required for the stress intensities to arrive at the 

peak increases with decreasing /13//za. Figure 3b 

depicts that at the crack tip b, varying the ratio 

Kin(t) 4r  t/~-, l - / t ,  t --1 ) 

O < t , < 4  

( 5 0 )  

where it is noted that the current result is for ~3/ 

/11= 1.0 and p3/pl = 1.001 to avoid the division by 

zero in Eq. (2). A good agreement between the 

two solutions is observed except that the peak 

value is slightly different. The number  of 1.238 as 

compared to the exact peak value 4/~r from the 

above equation is less than 3 percent. For  all 

practical purposes, this is within the range of 

deviation allowable for most engineering com- 

putations and the accuracy check may be 

considered satisfactory. 

For  the crack geometry fixed as h / 2 c = 0 . 5  and 

d / c  = 1.0 and the ratio of mass density set equal 

to unity p3/pl  = 1.0, the evolution of the dynamic 

stress intensity factors with time at the crack tips 

a and b is given in Figs. 3a and 3b, respectively, 

for several different shear modulus  ratios/13//z~. It 

is now appropriate to remark that in these figures 

and in the others that follow, the general qualita- 

tive feature of the curves is that the impact-  

induced stress intensity factors rise rapidly with 

time, reach the peaks, and then decrease in mag- 

nitude, eventually settling down to the static 

limits for sufficiently large times. Such a generic 

response is typical of  the elastodynamic crack 

1.4 

1.2 

1.0 

~ 0,8 

~-" 0.6 

0.4 

0.2 

0.0 
0 l 2 3 4 5 6 7 8 9 l0 
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o . 4  

o.21 

o.o 
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F i g .  3 Normalized dynamic stress intensity factors 
(a) K m a ( t ) / / ~  and (b) K m b ( t ) / I ~  versus 
nondimensional time cs t / c  for different 
values of /-t3/,ul (h/2c=0.5,  d / c=l .O ,  and 

P3/Pl = 1.0). 
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/zs//~ appears to hardly affect the magnitude o f  

the overshoot in the dynamic stress intensification 

and the time interval in which it occurs, al though 

the static solutions may be lowered as /za//21 is 

increased. This is possibly due to the weakened 

influence of  the waves reflected from the interface 

on the crack tip b that is further away from 

the interface, despite a wide range of  variations of  

/2s//21. 

The effect of  the graded interlayer thickness 

depends on the shear modulus ratio, as is 

apparent in Figs. 4 and 5 that contain the plots of  

time variations of  the dynamic stress intensity 

factors for different values of  h / 2 c  and /ls//,t~ as 

well. The results in these figures assume d / c  = 

1.0 and p s / p t = l . 0 .  As expected, for the pre- 

scribed values of/Zs//z~, the crack tip a is shown 

to be sensitive to the relative interlayer thickness 

h / 2 c ,  while the peaks experienced at the crack tip 

b also appear to remain virtually unaffected by h~ 

2c. Figure 4a exhibits that when /2s//Zs=0.2, the 

severity of  the crack-t ip  state tends to be 

attenuated as h / 2 c  is increased. The increased 

refracted waves into the uncracked constituents 

and the reduced reflected waves from the interface 

to the crack tip for the enlarged h / 2 c  are 

understood to be mainly responsible for such 

behavior.  The trend with respect to h / 2 c  thus 

indicates the more effective role of  the graded 

interlayer of  greater thickness in shielding the 
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values of h / 2 c  (/2a//2i=0.2, p J p t  = 1.0, and 
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Fig. 5 Normalized dynamic stress intensity factors 

(a) K m a ( t ) / K o  and (b) Kmb(t)/Ko versus 

nondimensional time c s t / c  for different 
values of h / 2 c  (/23//21=5.0, pa/pl = 1.0, and 

d / c  = 1.0). 
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Fig. 6 Peak dynamic stress intensity factors at the 
crack tip a, (Kma)pe~k/K~, versus crack dis- 
tance d/c for different values of h/2c and 

flstfll (I93/Pl= 1.0). 

/z~, where it is presumed that h/2c=0.5 and d~ 
c = l . 0 .  Figure 7a implies that when /Zs//Zl-----0.2, 

the near-tip region becomes less intensified as #3/ 

pl is increased. To be further observed is that the 

greater is the mass density ratio, the shorter is the 

time duration before climbing to the peak. When 

as//z~=5.0, the reverse is shown in Fig. 8a, where 

it is interesting to note that the constraint from the 

nearby stiffer constituent can be counteracted by 

increasing ps/pl. For the crack tip b away from 

the nominal interface, Figures 7b and 8b demon- 

strate that the values of ps/p~ have almost 

indiscernible influence on the magnitude of the 

peaks and their time duration as well. Overall, the 

effect of the mass density ratio is less appreciable, 

crack that exists in the stiffer side of the bonded 

media. When /za//zl=5.0, the opposite response 

prevails so that the amplitudes of the curves in 

Fig. 5a drop as the interlayer is made thinner. It 

can then be predicted that the influence of the 

interlayer becomes insignificant for h/2c>2.0, 
with the solutions for the given material com- 

binations being closely matched with that of an 

infinite, homogeneous plane. In addition, a care- 

ful examination of the results in Figs. 4a and 5a 

reveals how the interlayer thickness h/2c affects 

the duration of the overshoot at the crack tip a. 

Namely, for J/3//21:0.2 ( J 2 3 / / / 1 = 5 . 0 ) ,  the elapsed 

time needed to attain the maximum amplitude 

increases (decreases) when h/2c is decreased. 

To be mentioned is that increasing the crack- 

tip distance from the interlayer, d/c, yields a 

tendency, which is similar to increasing the 

interlayer thickness, h/2c. Hence, the peak values 

of the dynamic stress intensity factors achievable 

at the crack tip a after an impact are illustrated in 

Fig. 6 as a function of d /c  for some values of h~ 
2c and /.t3//2,, with the mass density ratio ~93/p~ 
being unity. It can be conjectured therefrom that 

for h/2c>2.0 or d/c>l.5,  the peak values are 

very close to that of a crack in the infinite, 

homogenous medium. 

The influence of the mass density ratio P3/P, on 

the dynamic crack-tip response is next examined 

in Figs. 7 and 8 with two different values of/2s/ 
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Fig. 7 Normalized dynamic stress intensity factors 
(a) .l(ma(t)/I(o and (b) Kmb(t)/Ko versus 
nondimensional time cst/c for different 
values of Ps/Pl (/xs//xl=0.2, h/2c=0.5, and 
d/c= 1.0). 
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Fig. 9 Peak dynamic stress intensity factors at the 

crack tip a, (~.a)peak/Ko, versus interlayer 

thickness h/2c for different values of Pz/O~ 
and lz3//z~ (d/c=l.O). 

par t icular  interest in this  table  is tha t  the rat io  of  

the stress intensit ies is enlarged as /z3//za is 

increased, with  the impl ica t ion  of  a more  

d o m i n a n t  effect of  inert ia  when  the uncracked  

cons t i tuent  has  the greater  stiffness. Besides, when  

/ I J /~1<  1.0, the iner t ia  effect is more  p r o n o u n c e d  

for the greater h/2c, whereas the opposi te  is 

observed for y3 / / t~>  1.0. Tables  2 and  3 fur ther  

provide  the dependence  of  the rat io of  the stress 

intensit ies on  the values of  Pa/Px and h/2c for 

/Za//Zl=0.2 and  5.0, respectively, and  d/c  = 1.0. In 

this case, it is wor th  not ing  that  when  the mass 

density of  the uncracked cons t i tuent  is much  

smaller  than  that  of  the cracked one, the generic 

in compar i son  with those of  the shear  modulus  

rat io  and the inter layer  thickness.  Wi th  the crack 

located at d/c=l.O, addi t iona l  results of  the 

peak stress intensity factors at the crack tip a are 

plot ted in Fig. 9 as a funct ion of  h/2c for some 

values of  pJol and/z3/ /zl .  It can be depicted that  

the rat io  P3/OI is, in general,  more  inf luent ial  for 

the smaller  h/2c, especially when /13 / /11<  1.0. 

As ano ther  po in t  of  interest,  a compar i son  is 

made  with the cor responding  elastostat ic solu- 

t ions by extract ing the rat ios between the peak 

and  static stress intensity factors, (Kin)peak/ 

(Kin) static. For  the crack locat ion specified as d~ 
c = l . 0  and p3/p~=l.O, the results are listed in 

Tab le  1 for different values of ~3//-tl and h/2c. Of 

T a b l e  1 Ratios of the peak dynamic stress intensity 
factors to the elastostatic solutions, (K~I,) peak/ 

(Kin) sta~c, for different values of/zs//~l and 
h/2c (d/c= 1.0 and pa/pl= 1.0). 

/~s//~1 0.1 0.2 0.5 1.0 2.0 5.0 

h/2c=0.50 1.170 1.184 1.210 1.238 1.252 1.265 
h/2c=1.25 1.195 1.203 1.218 1.238 1.248 1.265 
h/2c=2.00 1.205 1.210 1.222 1.238 1.242 1.257 

/z3/~a o. 1 0.2 0.5 1.0 2.0 5.0 

h/2c=0,50 1.172 1.185 1.209 1.238 1.258 1.289 
h/2c~1,25 1.200 1.207 1.220 1.238 1.247 1.268 
h/2c=2,00 1.208 1.213 1.222 1.238 1.241 1.257 
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Table 2 Ratios of the peak dynamic stress intensity 
factors to the elastostatic solutions, (KiH) peak/ 
(Ki l l )  static, for different values of Ps/Pl and 
h/2c (,Us/,U~=0.2 and d / c=  1.0). 

(KiIIa) p~ak/(Kills) static ([J3/~l =0 .2 )  

Ps/Pl O, 1 0.5 1.0 2.0 10. 

h/2c=0.50 1.250 1.202 1.184 1.169 1.145 
h/2c=1.25 1.231 1.210 1.203 1.198 1.190 
h/2c=2.00 1.226 1.214 1.210 1.207 1.203 

(KIIlb) peak/(KIIIb) static (/Zz//~ =0.2) 

Ps/pl 0.1 0.5 1.0 2.0 10. 

h/2c=0.50 1.184 1.184 1.185 1.185 1.185 
h/2c = 1.25 1.206 1.207 1.207 1.207 1.207 
h/2c=2.00 1.213 1.212 1.213 1.213 1.213 

Table 3 Ratios of the peak dynamic stress intensity 
factors to the elastostatic solutions, (Kin) pesk/ 
(Kil l )  static, for different values of Pa/Px and 
h/2c (/-ts//Zl=5.0 and d/c=l.O). 

(KlIla) peak/(KlIia) static (~/3/,t/1= 5.0) 

Ps/Px 0.1 0.5 1.0 2.0 10. 

h/2c=0.50 1.208 1.250 1.265 1.279 1.306 
h/2c= 1.25 1.236 1.258 1.265 1.272 1.283 
h/2c=2.00 1.241 1.253 1.257 1.261 1.261 

(/~IIIb) peak/(/~llIb) static (/131~f~1 = 5.0) 

P3/Pl 0.1 0.5 1.0 2.0 10. 

h/2c=0.50 1.290 1.290 1.289 1.289 1.289 
h/2c=1.25 1.270 1.268 1.268 1.268 1.268 
h/2c=2.00 1.258 1.257 1.257 1.257 1.258 

trend in Table 1 with respect to h/2c may not 

hold true at the crack tip a. It is thus observed 

from Table 2 that when pa//_tl=0.2 and pa/pa=0. 

1, the effect of inertia becomes lessened for the 

greater h/2c. When /~a//zl=5.0 and pa/pa=O.1, 
such an inertia effect becomes more notable with 

increasing h/2c as given in Table 3. For the crack 

tip b that is away from the interface, however, a 

consistent trend exists with h/2c for the given 

values of Pa/Pl. 

5. Closing Remarks 

An elastodynamic analysis has been performed 

to investigate the antiplane shear impact response 

of a crack in bonded materials in the presence of 

a graded interracial zone. With the interfacial 

zone being modeled by a nonhomogeneous inter- 

layer, the corresponding shear modulus and mass 

density were assumed to follow the power-law 

variations between the two dissimilar, homogeneous 

half-planes. The problem was formulated for the 

specific case of a crack located in one of the half- 

planes perpendicular to the interlayer and a 

Cauchy-type singular integral equation was de- 

rived in the Laplace transform domain. Numeri- 

cal inversion of the Laplace transforms was used 

to evaluate the evolution of the dynamic mode III 

stress intensity factors with time, characterizing 

the influences of material and geometric para- 

meters of the bonded media and their interactions 

on the magnitude and duration of the overshoot 

in the dynamic crack tip behavior. It was 

demonstrated that the values of the dynamic stress 

intensity factors are markedly affected by the 

shear modulus ratio, the interlayer thickness and 

the crack location as well, but are dependent to a 

lesser extent on the mass density ratio. In 

addition, the inertia effect, as measured by the 

ratio of the peak dynamic stress intensity factor to 

the elastostatic solution was addressed for various 

material and geometric combinations of the 

bonded media with the graded interlayer. 
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